
PhishGNN: A Phishing Website Detection
Framework using Graph Neural Networks

Tristan BILOT Grégoire GEIS
Badis HAMMI

EPITA Systems and Security Laboratory (LSE)
EPITA Engineering School

19th International Conference on Security and Cryptography
Secrypt 2022

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Plan

1 Introduction
Context
Research problem
Contributions

2 Related works
3 Proposed solution

Contribution
Graph Neural Networks basics
Graph Convolutional Network
Proposed framework

4 Experimental results
Evaluation framework
GitHub repository
Encoding performance study

5 Experimental results
6 Conclusion and future works

2/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Plan

1 Introduction
Context
Research problem
Contributions

2 Related works
3 Proposed solution

Contribution
Graph Neural Networks basics
Graph Convolutional Network
Proposed framework

4 Experimental results
Evaluation framework
GitHub repository
Encoding performance study

5 Experimental results
6 Conclusion and future works

3/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Context

Context

Phishing Attacks in Recent Years

The number of phishing websites between January 2016 and January
2021 increased tremendously

We need a reliable way to prevent this growth of attacks

Figure – Number of phishing websites observed between 2007 and 2021.
Source : Google Safe Browsing

4/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Context

Context

What Already Exists in Phishing Detection ?

URL blacklists

Heuristics

Machine Learning-based approaches

Naive Bayes
Support Vector Machine (SVM)
Logistic Regression
...

Deep Learning-based approaches

Multi-Layer Perceptrons (MLP)
Convolutional Neural Networks (CNN)
Generative Adversarial Networks (GAN)
Recurrent Neural Networks (RNN)
Long Short-Term Memory (LSTM)
...

5/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Research problem

Research problem

Website Hyperlink Structure

Most existing techniques do not leverage the internal hyperlink structure
of phishing websites for its detection

The only known implementations are based on hand-crafted graph
features

These implementations do not leverage a Deep Learning model to let it
learn the features itself

Graph features learned by such a model along with other traditional
features could lead to better classification performance

6/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Contributions

Contributions

Contributions

A framework based on Graph Neural Networks for phishing website
detection

Our solution leverages the hyperlink structure thanks to Graph
Deep Learning, along with many other hand-crafted features
learned with traditional Machine Learning

A Rust crawler for extracting the graph structure of websites has been
made open-source a

The dataset we built and used during this study is also publicly available

a. https://github.com/TristanBilot/phishGNN

7/41

https://github.com/TristanBilot/phishGNN

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Plan

1 Introduction
Context
Research problem
Contributions

2 Related works
3 Proposed solution

Contribution
Graph Neural Networks basics
Graph Convolutional Network
Proposed framework

4 Experimental results
Evaluation framework
GitHub repository
Encoding performance study

5 Experimental results
6 Conclusion and future works

8/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Related works

Tan et al. (2020) [1]

Propose a graph-based detection system where hand-crafted features
are extracted from the hyperlink structure of the webpage

Achieve 97.8% accuracy using a C4.5 classifier on these features

The authors do not leverage the Deep Learning to let the model learn by
itself the most useful features to differentiate benign and phishing cases

A dataset of only 1000 samples is used (500 benign, 500 phishing)

Ouyang and Zhang (2021) [2]

Only study applying GNNs to phishing detection

A graph is built from the HTML DOM and a GNN is fed with this graph to
perform predictions with a 93% accuracy

Relies solely on the HTML content

Does not leverage other features which lead to good results in other
studies

9/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Plan

1 Introduction
Context
Research problem
Contributions

2 Related works
3 Proposed solution

Contribution
Graph Neural Networks basics
Graph Convolutional Network
Proposed framework

4 Experimental results
Evaluation framework
GitHub repository
Encoding performance study

5 Experimental results
6 Conclusion and future works

10/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Contribution

Contribution

11/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Contribution

Feature extraction

A vector of size 25 features is extracted from every crawled URL

3 sets of features : lexical, content and domain features

<a>, <form>and <iframe>tags are used by the crawler to build the graph

The graph is stored as a COO-format matrix of shape 2x |E |
Thus each graph is stored using only O(|E |) memory space

Figure – COOrdinates format used to store graph matrices.

12/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Contribution

Feature extraction

Figure – Extracted features for every crawled URL.

13/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Contribution

Graph visualization

(a) (b)

Graph representation of two websites after crawling with depth=1. Graph on
the left contains multiple children URLs already crawled in previous iterations
so their children are inserted in the graph as nodes of depth 2. Graph on the
right contains children URLs never crawled before.

14/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Contribution

Graph visualization

Figure – Crawling with multiple depths (from 1 to 3).

In this paper, the depth has been set to 1 due to the exponential growth in the
number of links during crawling.

15/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Graph Neural Networks basics

Graph Neural Networks

A Graph Neural Network (GNN) is nothing more than a Neural Network
taking as input a graph and extracting structural features from it

It is possible to use typical Deep Learning layers after GNN layers, but
not before because these layers don’t know how to process graph data

Figure – Graph Neural Network with 2 hidden layers.

16/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Graph Neural Networks basics

Why do we need GNNs?

Graphs are unstructured data and traditional ML or Deep Learning
methods are not efficient when used on such data

In graphs, there is no notion of geographic position such as right, left,
top, bottom

Graphs contain important structural information that can be used for
classification, regression or clustering

Deep Learning techniques can leverage the graph structure to extract
geometric features and improve predictions

GNNs achieve state of the art performance in many use cases dealing
with graphs (drug discovery, social networks, traffic,
recommendations. . .)

17/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Graph Convolutional Network

Graph Convolutional Network

Graph Representation Learning technique

At each layer of the model, each node in the graph receives messages
from its neighborhood node features + some learnable weights in order
to learn the optimal coefficients to ponderate these features
(fundamental concepts of Deep Learning)

Figure – [Kipf et al. (2016)] Each convolutional layer will create node
embeddings. Node embeddings will be near if they share common features.

18/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Graph Convolutional Network

Graph Convolutional Network
Layer-wise propagation rule of GCN

H(l) : Propagation at layer l ,
H(0) = X (the feature matrix)

A : Adjacency matrix

Ã : Adjacency matrix with self
loops

W (l) : Weight matrix at layer l

σ : Rectified Linear Unit
non-linear activation function

D̃− 1
2 : Normalization coefficient

applied to adjacency matrix
19/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Graph Convolutional Network

Graph Convolutional Network

In the case of Graph classification, we want to apply a readout/pooling
function on the node embeddings to obtain a final graph embedding.

This graph embedding can be used in downstream Deep Learning
models.

In our example we apply MLP layers to classify the embeddings as
phishing or benign.

20/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Proposed framework

phishGNN

Framework (2 steps)

1 Pre-classification : train a classifier with all known labels and then use it
to predict every unknown label

2 Message-passing : gather all the predictions (0 or 1) from the previous
step using a GNN, then apply pooling to reduce dimensionality and
make a final prediction for the whole graph with a linear layer

21/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Plan

1 Introduction
Context
Research problem
Contributions

2 Related works
3 Proposed solution

Contribution
Graph Neural Networks basics
Graph Convolutional Network
Proposed framework

4 Experimental results
Evaluation framework
GitHub repository
Encoding performance study

5 Experimental results
6 Conclusion and future works

22/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Evaluation framework

Evaluation framework

Implemented models

Graph Convolutional Network (GCN) => Thomas N. Kipf, Max Welling,
Semi-Supervised Classification with Graph Convolutional Networks

Graph Isomorphism Network (GIN) => Xu et al., How Powerful are Graph Neural
Networks?

Graph Attention Network (GAT) => Petar Veličković et al., Graph Attention
Networks

GraphSAGE => William L. Hamilton et al., Inductive Representation Learning on Large
Graphs

ClusterGCN => Wei-Lin Chiang et al., Cluster-GCN : An Efficient Algorithm for Training
Deep and Large Graph Convolutional Networks

MemPool => Matheus Cavalcante et al., MemPool : A Shared-L1 Memory Many-Core
Cluster with a Low-Latency Interconnect

Multi-Layer Perceptron (MLP) => Rosenblatt, The perceptron : a probabilistic model
for information storage and organization in the brain.

23/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Evaluation framework

Dataset

Initially around 30k malicious URLs extracted from phishtank a and
openphish b

2 filtering steps are then applied to these URLs :

filter the HTTP status code if it is an error (not in range 200-299) :
reduce dataset by 85%
filter malicious URLs with Google Safe Browsing API to remove
non-malicious websites : reduce dataset by 40%

After filtering, the dataset contains 4633 high-quality URLs, where 2333
are phishing and 2300 are benign

Benign URLs are extracted from the Alexa top 1 million sites dataset c

a. https://phishtank.org/
b. https://www.openphish.com/
c. https://www.kaggle.com/datasets/cheedcheed/top1m

24/41

https://phishtank.org/
https://www.openphish.com/
https://www.kaggle.com/datasets/cheedcheed/top1m

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Evaluation framework

Dataset

Model evaluation (without phishGNN)

25/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Evaluation framework

Dataset

Dataset stats

number of graphs : 4633

mean of number of nodes/edges : 90/138

max number of nodes/edges : 5185/5214

min number of nodes/edges : 1/1

26/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

GitHub repository

GitHub repository

The source code of the framework and experiments made in this study are
available on GitHub a.

a. https://github.com/TristanBilot/phishGNN

27/41

https://github.com/TristanBilot/phishGNN

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

GitHub repository

images/Certificate103097.png

ETSI TS 103097 standard is described by the meaning of a syntax
derived from IETF RFC 2246 and from IEEE 1609.2-2012

Syntax ambiguity ==> the implementation of these structures can lead
to numerous interpretations

Multiple implementations can be derived from this description (even
those that do not respect the standard)

28/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

GitHub repository

Ambiguity example 1

images/SignerInfo.png

SignerInfo

in the section dedicated to
this structure, it is clearly
explained that this type have
to be only one of the three
following :

1 self
2 certificate digest with

SHA256
3 certificate digest with an

other algorithm

29/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

GitHub repository

Ambiguity example 2

images/SubjectAttribute.png

SubjectAttribute

Does not support two
SubjectAttributes of the
same type

A verification key and an
assurance level are
mandatory

30/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Encoding performance study

Overall context

A C-ITS environment in which two ITS stations (ITSS) communicate

Within a communication, a message is encoded by the first station,
transmitted and finally decoded by the second one

For authentication, the message contains the sender’s certificate

Our campaign study and compare the different encoding schemes :
Binary in BigEndian form, PER, UPER, DER, BER, OER, COER, XER,
CXER and EXER.

31/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Encoding performance study

Experimental framework

Two computers : sender and receiver

Intel® Xeon® CPU E5-1607 v3 @ 3.10GHz (quad-core) with 8 Giga
bytes of RAM

ASN.1 implementation was realized using OSS Nokalva compiler (to
Java code)

Powerful computers, but fair comparison

32/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Encoding performance study

Experimental scenario

images/algorithm.png

X = 10,102,103,104,105and106

33/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Plan

1 Introduction
Context
Research problem
Contributions

2 Related works
3 Proposed solution

Contribution
Graph Neural Networks basics
Graph Convolutional Network
Proposed framework

4 Experimental results
Evaluation framework
GitHub repository
Encoding performance study

5 Experimental results
6 Conclusion and future works

34/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Encoding Times

Images/EncodingTimeEvolution2-eps-converted-to.pdf

(a)

Images/Encodings.png

(b)

Figure – Encoding times

(1) COER, (2) Binary, (3) OER, (4) UPER, (5) DER, (6) BER, (7) PER,
(8) CXER, (9) XER, (10) EXER.

35/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Decoding Times

Images/DecodingTimeEvolution2-eps-converted-to.pdf

(a)

Images/Decodings.png

(b)

Figure – Decoding times

(1) COER, (2) DER, (3) OER, (4) UPER, (5) BER, (6) PER, (7) Binary,
(8) CXER, (9) XER, (10) EXER

36/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

certificate size

Encoding Size average
(bytes)

Size Var. Size SD

UPER 187.3701 468.7203 21.64995
PER 192.3701 468.7203 21.64995
COER 198.3701 468.7203 21.64995
OER 198.3701 468.7203 21.64995
Binary 200.4964 479.9544 21.90786
DER 251.0994 632.6233 25.152
BER 251.0994 632.6233 25.152
CXER 1496.422 2496.244 49.96243
EXER 1880.13 5251.959 72.4704
XER 1924.137 5959.503 77.19782

Table – Statistics (Average, Variance and Standard Deviation) of the obtained
results with 106 certificates

37/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Ecoding and decoding speeds

Encoding Speed = δ length
δ time

1 XER : 54446.53 B/ms
2 CXER : 50432.18 B/ms
3 EXER : 39562.44 B/ms
4 COER : 14113.4 B/ms
5 DER : 12219.86 B/ms
6 BER : 12204.11 B/ms
7 Binary : 10938 B/ms
8 OER : 10810.92 B/ms
9 UPER : 9768.333 B/ms

10 PER : 8970.444 B/ms

Decoding

1 XER : 19370.19 B/ms
2 CXER : 17347.18 B/ms
3 COER : 12798.46 B/ms
4 DER : 11246.3 B/ms
5 EXER : 10332.09 B/ms
6 OER : 8686.24 B/ms
7 BER : 8267.766 B/ms
8 UPER : 7009.849 B/ms
9 PER : 5575.738 B/ms

10 Binary : 4517.666 B/ms

38/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Plan

1 Introduction
Context
Research problem
Contributions

2 Related works
3 Proposed solution

Contribution
Graph Neural Networks basics
Graph Convolutional Network
Proposed framework

4 Experimental results
Evaluation framework
GitHub repository
Encoding performance study

5 Experimental results
6 Conclusion and future works

39/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

Conclusion and Future works

conclusion

We provided an ASN.1 specification that ensure secure implementation
of ETSI certificate

We provided an extensive study on performance encoding schemes

According to needs, the choice of the encoding scheme could be
different :

COER realizes the best encoding and decoding times
UPER realizes enormous size savings
ASN.1 XML encodings are very fast comparing to other encodings
but completely not adapted to this use case

Future works

The submission of our ASN.1 definition to ETSI organism in order to be
used for the standard description

The specification of an ASN.1 definition for the ETSI secured message
structure

40/41

Introduction Related works Proposed solution Experimental results Experimental results Conclusion and future works

images/merci.png

41/41

	Introduction
	Context
	Research problem
	Contributions

	Related works
	Proposed solution
	Contribution
	Graph Neural Networks basics
	Graph Convolutional Network
	Proposed framework

	Experimental results
	Evaluation framework
	GitHub repository
	Encoding performance study

	Experimental results
	Conclusion and future works

